SYNTHESIS OF SOME BIOLOGICALLY ACTIVE DERIVATIVES OF 2-HYDROXYMETHYL-5-HYDROXY-4H-PYRAN-4-ONE

Miroslav Veverka ${ }^{a}$ and Eva Kralovičová ${ }^{\text {b }}$
${ }^{a}$ Institute of Biotechnology, Slovak Technical University, 81237 Bratislava and
${ }^{b}$ Research Institute of Chemical Technology, 83603 Bratislava

Received April 24, 1989
Accepted August 24, 1989

Abstract

Depending on reaction conditions, acylation of the phenolic and primary alcoholic group in 2 -hydro xymethyl-5-hydroxy- 4 H -pyran-4-one leads to mono- or disubstituted products. Also described is acylation of the phenolic group in 2-chloromethyl- or 2-bromomethyl-5-hydroxy-4H--pyran-4-one as well as the nucleophilic replacement of the halogen by azide group. The prepared derivatives exhibit herbicidal and growth regulatory activity.

One of the possible ways in the search for more selective and safer pesticides consists in preparation of modified traditional structures by partial synthesis from natural material. 2-Hydroxymethyl-5-hydroxy-4H-pyran-4-one (kojic acid) and its derivatives exhibit pesticidal activities ${ }^{1}$ and they undergo an easy microbial degradation to nontoxic products ${ }^{2}$. In the present study we modified the phenolic and primary alcoholic group in 2-hydroxymethyl-5-hydroxy-4H-pyran-4-one and its derivatives by bonding to herbicidally active residues of carboxylic acids in order to improve transport properties of the desired structures in the plant system.

Depending on the conditions, treatment of 2-hydroxymethyl-5-hydroxy-4H-pyran--4-one with reactive derivatives of carboxylic acids affords monoacyl or diacyl derivatives. Reaction with benzoyl chloride or acetic anhydride in an excess of pyridine leads to acylation of both groups ${ }^{3}$. Benzoylation in the presence of a small excess of aqueous alkali affords the 5-O-benzoyl derivative whereas with large excess of the alkali the reaction gives the 5,7-dibenzoyl derivative ${ }^{3}$. The 7-O-monoacetate was prepared by treatment of the 5,7 -O-diacetate with aluminium chloride ${ }^{4}$ or by reaction with hydroxylamine hydrochloride in pyridine ${ }^{3}$. Benzoylation in the absence of a hydrogen chloride acceptor results in formation of the 5-O-benzoyl derivative ${ }^{5}$. Selective benzoylations are described by Poonia ${ }^{6}$.

In our work, the phenolic group of the title compound and its 2-halogenomethyl and 2-azidomethyl derivatives was acylated with acyl chlorides in aqueous acetone in the presence of sodium hydroxide, or in acetone with triethylamine as the base $(I-I V)$. The yields of these reactions are given in Table I. Further, we tried to prepare derivatives $I-I V$ under conditions described in the literature ${ }^{5}$ (in the absence
of base). Whereas at room temperature the reaction of 2-hydroxymethyl-5-hydroxy--4 H -pyran-4-one with 2 -methyl-4-chlorophenoxyacetyl chloride in toluene did not proceed at all, at reflux both the phenolic and primary alcoholic groups were acylated (compound V).

$I-V$

The nucleophilic substitution of the halogen with sodium azide in N, N-dimethylformamide took place irrespective whether 2-bromomethyl-5-hydroxy-4 H -pyran-4--one or its 5-O-acyl derivatives $I V$ were used as substrates.

The UV spectra of the prepared derivatives exhibit two strong absorption maxima in the regions $215-216 \mathrm{~nm}$ and $255-293 \mathrm{~nm}$, corresponding to the respective $\pi \rightarrow \pi^{*}$ and $n-\pi^{*}$ transitions in the γ-pyron ring. The IR spectra display characteristic bands of the $v(\mathrm{C}=\mathrm{O})$ vibrations in the region $1780-1650 \mathrm{~cm}^{-1}$ and of the $v(\mathrm{C}=\mathrm{C})$ vibrations at $1600-1490 \mathrm{~cm}^{-1}$. Characteristic singlets of the $\mathrm{H}-3$ and $\mathrm{H}-6$ protons in the ${ }^{1} \mathrm{H}$ NMR spectrum were found at $6.47-6.85$ and $7.81-8.70 \mathrm{ppm}$. The broad interval for the H-6 proton signal is caused by the different character of substituents in position 5.

Table I
2-Hydroxymethyl-5-hydroxy-4H-pyran-4-one derivatives $I-V$

Compound	Formula(M.w.)	$\begin{aligned} & \text { M.p., }{ }^{\circ} \mathbf{C} \\ & \text { Yield, } \% \end{aligned}$	Calculated/Found		
			\% C	\% H	$\% \mathrm{Cl}$
Ia	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{7}$	90-91	$49 \cdot 59$	$4 \cdot 16$	-
	(242-2)	76	$49 \cdot 85$	$4 \cdot 09$	-
Ib	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$	81-84	$58 \cdot 4$	$6 \cdot 24$	-
	(226.2)	69	$57 \cdot 69$	$6 \cdot 15$	-
Ic	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{5}$	176	$49 \cdot 55$	$2 \cdot 56$	$22 \cdot 50$
	(315-1)	68	$49 \cdot 26$	$2 \cdot 44$	$22 \cdot 17$
Id	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{6}$	154-157	$66 \cdot 27$	$4 \cdot 32$:-
	(326.3)	57	$65 \cdot 92$	4.07	-
Ie	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{6}$	135-138	55.48	$4 \cdot 04$	10.92
	(324.7)	¢5	$55 \cdot 12$	$4 \cdot 54$	11.25
If	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{6}$	125-127	$48 \cdot 72$	$2 \cdot 92$	$20 \cdot 54$
	(345.1)	90	$48 \cdot 42$	$2 \cdot 83$	$20 \cdot 59$
$I g$	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}_{6}$	109-114	56.73	$4 \cdot 46$	$10 \cdot 47$
	(338.7)	85	$56 \cdot 23$	$4 \cdot 27$	$10 \cdot 12$
Ih	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{6}$	$77-81$	$50 \cdot 16$	$3 \cdot 37$	$19 \cdot 74$
	$(359 \cdot 2)$	79	$49 \cdot 82$	$3 \cdot 13$	$19 \cdot 27$
Ii	$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{5}$	157-158	44.67	$2 \cdot 02$	$30 \cdot 43$
	$(349 \cdot 6)$	82	$44 \cdot 52$	1.99	$30 \cdot 24$
Ij	$\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{5}$	67-70	$69 \cdot 44$	$9 \cdot 54$	-
	$(380 \cdot 5)$	62	$69 \cdot 16$	$9 \cdot 39$	-
$H k$	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}_{5}$	107-109	$37 \cdot 97$	$2 \cdot 39$	28.02
	(253.0)	51	$37 \cdot 66$	$1 \cdot 81$	27.85
IIa	$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{O}_{4}$	103-108	$46 \cdot 81$	2.12	31.89
	(333.6)	72	$46 \cdot 44$	$2 \cdot 08$	$31 \cdot 35$
IIb	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClO}_{5}$	132	$62 \cdot 71$	$3 \cdot 80$	$10 \cdot 28$
	$(344 \cdot 8)$	43	$62 \cdot 13$	$3 \cdot 57$	$9 \cdot 98$
IIC	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{5}$	66-71	52.50	$3 \cdot 52$	20.66
	$(343 \cdot 2)$	64	$52 \cdot 39$	$3 \cdot 42$	20.81
IId	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{5}$	92-96	$46 \cdot 25$	$2 \cdot 50$	29.25
	(363.6)	75	$46 \cdot 46$	$2 \cdot 58$	$29 \cdot 11$
IIe	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{ClO}_{5}$	129-133	$53 \cdot 80$	3.95	$19 \cdot 85$
	(357-2)	81	$53 \cdot 31$	3.84	$19 \cdot 47$
IIf	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}_{5}$	76	$47 \cdot 71$	$2 \cdot 94$	$28 \cdot 17$
	$(377 \cdot 6)$	74	47.18	$2 \cdot 73$	$27 \cdot 88$

[^0]TAble I
(Continued)

Compound	Formula (M.w.)	$\begin{aligned} & \text { M.p., }{ }^{\circ} \mathrm{C} \\ & \text { Yield, } \% \end{aligned}$	Calculated/Found		
			\% C	\% H	\% Cl
IIg	$\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{ClO}_{4}$	46-48	66.23	$8 \cdot 84$	8.89
	(399.0)	66	66.06	8.72	$8 \cdot 78$
IIh	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}_{4}$	105-107	$35 \cdot 39$	1.86	$39 \cdot 18$
	(271.5)	49	$35 \cdot 03$	1.78	38.88
IIIa	$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrCl}_{2} \mathrm{O}_{4}$	96	41.31	1.87	18.76
	(378.0)	72	$41 \cdot 27$	$1 \cdot 83$	$18 \cdot 14$
IIIb	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrO}_{5}{ }^{\text {a }}$	127-132	55.49	$3 \cdot 37$	-
	(389-2)	49	54.97	$3 \cdot 13$	-
IIIC	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrClO}_{5}$	$82-85$	$46 \cdot 48$	3.12	$9 \cdot 15$
	(387-6)	72	$46 \cdot 70$	$3 \cdot 92$	$9 \cdot 07$
IIId	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrCl}_{2} \mathrm{O}_{5}$	85-90	$41 \cdot 21$	$2 \cdot 22$	$17 \cdot 38$
	(408.0)	76	$41 \cdot 17$	$2 \cdot 21$	$17 \cdot 11$
IVa	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{5}{ }^{\text {b }}$	95-98	51.52	3.46	$10 \cdot 14$
	(349-8)	76	51.49	3.79	$10 \cdot 03$
$I V b$	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{\text {c }}$	87-92	45.43	2.45	$19 \cdot 16$
	(370.1)	70	45.48	$2 \cdot 49$	$19 \cdot 15$
IVc	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{\text {d }}$	158	$34 \cdot 56$	$1 \cdot 81$	25.50
	(278.1)	82	34.33	1.72	$25 \cdot 14$
V	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{8}$	$80-83$	56.82	3.97	13.98
	$(507 \cdot 3)$	65	56.66	$3 \cdot 81$	$13 \cdot 82$

${ }^{a} \%$ Br: calculated 20.53 , found $20.01 ;^{b} \% \mathrm{~N}$: calculated 12.02 , found $11.91 ;{ }^{c} \% \mathrm{~N}$: calculated $11 \cdot 35$, found $11 \cdot 28$; $^{d} \% \mathrm{~N}$: calculated $15 \cdot 11$, found $14 \cdot 97$.

The synthesized derivatives $I-V$ were tested as potential herbicides and plant growth regulators. The plant growth regulatory activity was determined ${ }^{7}$ on subapical segments of wheat seed coleoptiles; at the chosen concentration of the tested compound ($75 \mathrm{mg} / \mathrm{l}$), the following inhibition $\%$ (related to the coleoptile segment elongation in the control after cultivation) and increase \% (related to the coleoptile segment length prior to cultivation), using IAA (β-indolylacetic acid) as the positive control (37.5% and $38 \cdot 4 \%$, respectively), were found: Id $42 \cdot 5,40 \cdot 1$; Ie $71 \cdot 3,51 \cdot 2$; If $78 \cdot 6,42 \cdot 1$; Ih $75 \cdot 5$, $42 \cdot 2$; Ii $81 \cdot 3,56 \cdot 4$; IIb $28 \cdot 7$, $36 \cdot 1$; IIc $40 \cdot 7$, $39 \cdot 5$; IId $68 \cdot 8,41 \cdot 2$; IIId 72•8, $38 \cdot 6$.

EXPERIMENTAL

Melting points were determined on a Kofler block and are uncorrected. Proton NMR spectra (Tabie II) were obtained with a BS 487 C TESLA instrument (80 MHz) in hexadeuteriodimethyl sulfoxide with hexamethyldisiloxane as internal standard. Infrared spectra (Table III) were recorded on a Specord 71 IR spectrometer (Carl Zeiss, Jena) by the KBr technique. Ultraviolet spectra (Table III) were measured in $10^{-4} \mathrm{~mol}^{-1}$ solutions in the Mc Ilvain buffer (pH 4) on a Specord UV VIS instrument (Carl Zeiss, Jena) at room temperature. Samples of the obtained compounds were dried over phosphorus pentoxide at room temperature and 60 Pa or by simple exposure to air at room temperature. The extracts were dried over sodium sulfate and concentrated at $40-45^{\circ} \mathrm{C}$ under diminished pressure $(2-2 \cdot 5 \mathrm{kPa})$ on a rotatory evaporator. Thin-layer chromatography (TLC) was performed on Silufol sheets (Kavalier, Czechoslovakia) and spots were detected by UV light (254 nm). Column chromatography was carried out on silica gel ($60-120 \mu \mathrm{~m}$) using 30 g of the sorbent per 1 g of compound.

Acylation of 2-Hydroxymethyl-5-hydroxy-4H-pyran-4-one
and its 2-Halogenomethyl or 2-Azidomethyl Derivatives
A) The corresponding acyl chloride (17 mmol) was gradually added at $5-10^{\circ} \mathrm{C}$ to a solution of 2-hydroxymethyl-5-hydroxy-4H-pyran-4-one or its 2 -chloromethyl, 2-bromomethyl or 2-azido derivative (17 mmol) and sodium hydroxide $(0.8 \mathrm{~g}, 20 \mathrm{mmol})$ in a mixture of acetone and water $(50 \mathrm{ml}, 3: 1)$. The reaction mixture was stirred at room temperature for 2 h , the acetone was evaporated and the residue was extracted with ethyl acetate. The combined extracts were dried over sodium sulfate, the solvent was evaporated and the crude product was crystallized from benzene.

This method was employed for the preparation of compounds Ia, Ib,If-Ik, IId - IIh, IIId and Ifa-IVc.
B) The corresponding acyl chloride (20 mmol) was gradually added at $5-10^{\circ} \mathrm{C}$ to a solution of 2 -hydroxymethyl-5-hydroxy- $4 H$-pyran-4-one or its 2 -chloromethyl or 2-bromomethyl derivative (17 mmol) and triethylamine $(2.8 \mathrm{ml}, 20 \mathrm{mmol})$ in acetone (100 ml). The reaction mixture was stirred for 2 h at room temperature, filtered and the filtrate was concentrated. The crude product was purified by crystallization from benzene or by column chromatography on silica gel in chloroform-acetore ($6: 1$).

This procedure was used in the preparation of compounds $I c-I e, I I a-I I c$ and IIIa-IIIc.

2-Azidomethyl-5-(2-methyl-4-chlorophenoxyacetoxy)-4H-pyran-4-one (IVa)

Sodium azide $(0.36 \mathrm{~g}, 5.5 \mathrm{mmol})$ was added to a solution of 2-bromomethyl-5-(2-methyl-4--chlorophenoxyacetoxy)-4H-pyran-4-one (IIIc; $1.94 \mathrm{~g}, 5 \mathrm{mmol}$) in N, N-dimethylformamide $(10 \mathrm{ml})$. After stirring for 3.5 h , the mixture was poured into water (70 ml) and the separated oil was extracted with ethyl acetate. The solvent was evaporated and the product was purified by column chromatography on silica gel in acetone-chloroform (1:10).

Compound IVb was prepared analogously from compound IIId.
2-(2-Methyl-4-chlorophenoxyacetoxymethyl)-5-(2-methyl-
-4-chlorophenoxyacetoxy)-4H-pyran-4-one (V)
A mixture of 2-methyl-4-chlorophenoxyacetyl chloride ($2 \cdot 39 \mathrm{~g}, 10 \mathrm{mmol}$), 2-hydroxymethyl-5--hydroxy- $4 H$-pyran- 4 -one $(0.71 \mathrm{~g}, 5 \mathrm{mmol})$ and toluene (20 ml) was refluxed for 1.5 h . The solvent was distilled off and the crude product was crystallized from benzene-cyclohexane ($2: 1$).
Table II
${ }^{1} \mathrm{H}$ NMR spectra of compounds $I-V$, in ppm (δ-scale), coupling constants in Hz

Compound	$\mathrm{H}-3$ (s)	$\mathrm{H}-6$ (s)	$\underset{(\mathrm{s})}{\mathrm{CH}_{2}}$	H-arom.	Other signals
$1 a$	$6 \cdot 57$	7.88	5.10		$4.29 \mathrm{q}, 2 \mathrm{H}\left(\mathrm{CH}_{2}, J=7 \cdot 2\right) ; 1.38 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}, J=7 \cdot 2\right)$
$1 b$	6.49	$7 \cdot 81$	$4 \cdot 44$		$1.33 \mathrm{~s}, 9 \mathrm{H}\left(\mathrm{CH}_{3}\right)$
Ic	6.49	8.57	$5 \cdot 13$	$8.03 \mathrm{~s}, 7.76 \mathrm{~d}, 7.59 \mathrm{~d}^{\text {c }}$	
Id	6.52	8.04	$5 \cdot 06$	$8.25-7 \cdot 37^{a}$	$5 \cdot 18 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$
Ie	6.49	8.25	4.49	$7.24 \mathrm{~s}, 7.14 \mathrm{~d}, 7.05 \mathrm{~d}^{\text {b }}$	$5.06 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2}\right) ; 2.20 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$
If	6.47	8.55	4.39	$7.60 \mathrm{~d}, 7.35 \mathrm{~d}, 7.28 \mathrm{~s}^{\text {c }}$	$5.27 \mathrm{s} ,2 \mathrm{H}\left(\mathrm{CH}_{2}\right)$
$I g$	6.75	8.07	4.95	$7 \cdot 20 \mathrm{~s}, 7 \cdot 11 \mathrm{~d}, 7 \cdot 01 \mathrm{~d}^{\text {b }}$	$\begin{aligned} & 4.95 \mathrm{q}, 1 \mathrm{H}(\mathrm{CH}, J=6.6) ; 2.17 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) \\ & 1.72 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{CH}_{3}, J=6.6\right) \end{aligned}$
I^{\prime}	6.48	8.02	4.48	$7.48 \mathrm{~d}, 7.36 \mathrm{~d}, 7.28 \mathrm{~s}^{\text {c }}$	$4.92 \mathrm{q}, 1 \mathrm{H}(\mathrm{CH}, J=6.6) ; 1.72 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{CH}_{3}, J=6,6\right)$
Ii	6.53	8.47	4.52	$7.54 \mathrm{~d}, 7 \cdot 15 \mathrm{~d}^{\text {d }}$	
${ }^{\prime}$	6.45	8.19	4.48		$\begin{aligned} & 3.38 \mathrm{t}, 2 \mathrm{H}\left(\mathrm{CH}_{2}, J=6.1\right), 2.97-1.30 \mathrm{~m}, 26 \mathrm{H} \\ & \left(\mathrm{CH}_{2}\right) ; 0.83 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3}, J=6.8\right) \end{aligned}$
$\underline{I k}$	6.70	S.C6	$5 \cdot 25$		$6.56 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CH})$
IIa	$6 \cdot 73$	$8 \cdot 70$	$4 \cdot 71$	$8.04 \mathrm{~s}, 7.79 \mathrm{~d}, 7.62 \mathrm{~d}^{c}$	

${ }^{a} \mathrm{~m}, 7 \mathrm{H}(\mathrm{H}-\mathrm{arom}.){ }^{b} J\left(5^{\prime}, 6^{\prime}\right)=9 \cdot 0 ;{ }^{c} J\left(5^{\prime}, 6^{\prime}\right)=8 \cdot \varepsilon ;^{d} J\left(4^{\prime}, 5^{\prime}\right)=8 \cdot 8$.

Table III
Infrared (wavenumbers in cm^{-1}) and ultraviolet ($\lambda_{\max }, \mathrm{nm} ; \log \varepsilon, \mathrm{m}^{2} \mathrm{~mol}^{-1}$) spectra of selected compounds

Compound	$\nu(\mathrm{C}=\mathrm{O})$	$v(\mathrm{C}=\mathrm{C})$		$\log \varepsilon$	$\lambda_{\max }$	$\log \varepsilon$	
$I b$	1768	1750	1600	255	4.04	215	3.50
	1657						
Id	1778	1652	1595	275	3.68	226	3.86
If	1741	1653	1589	280	3.79	225	3.54
$I i$	1770	1652	1490	255	4.10	216	3.53
Ik	1765	1652	1595	268	3.90	226	3.70
IIb	1748	1653	1600	275	4.04	226	4.12
IId	1789	1653	1593	272	3.84	221	3.84
IIIb	1725	1653	1590	293	4.00	225	4.15
IIId	1788	1654	1580	280	4.06	223	4.00

REFERENCES

1. Ichimoto I., Fatsumi Ch.: Agric. Biol. Chem. 39, 1311 (1975).
2. Dobiáš J., Němec P., Brtko I.: Biológia 32, 417 (1977).
3. Beélik A., Purves V. C.: Can. J. Chem. 33, 1361 (1955).
4. Hurd Ch. D., Sims R. J.: J. Am. Chem. Soc. 71,2440 (1949).
5. Yubata T.: J. Chem. Soc. Jpn. 37, 1185, 1234 (1916); Chem. Abstr. 17, 1475 (1923).
6. Poonia N. S., Arora A. K., Bajaj A. V.: Bull. Chem. Soc. Jpn. 53, 569 (1980).
7. Erdelský K., Frix̌ F. in: Praktikum a analytické metódy vo fyziológii rastlin, p. 482. SPN, Bratislava 1979.

Translated by M. Tichý.

[^0]: Collect. Czech. Chem. Commun. (Vol. 55) (1990)

